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Optimization of SNR Improvement in the
Noncoherent OTDR Based

on Simplex Codes
Duckey Lee, Hosung Yoon, Member, IEEE, Pilhan Kim, Jonghan Park, and Namkyoo Park, Member, IEEE

Abstract—This paper demonstrates signal-to-noise ratio (SNR)
improvement of an optical time-domain reflectometer (OTDR)
using simplex codes (scs) for the first time. By developing a
generalized procedure for the analysis of noise transfer in the
coded OTDR employing L-bit scs, the SNR dependence on the
receiver bandwidth is also investigated. Experimental results ob-
tained from a constructed sc-OTDR showed excellent agreement
with theoretical results over entire code lengths. Improvement of
the SNR up to 9.2 dB has been demonstrated using 255-bit scs.

Index Terms—Coding gain, optical fiber communications, opti-
cal time-domain reflectometer (OTDR), simplex codes (scs).

I. INTRODUCTION

AN OPTICAL time-domain reflectometer (OTDR) char-
acterizes optical fibers by injecting an optical probe

pulse into the fiber under test and detecting the backscattered
optical signals. Increasing the pulsewidth of the probe pulse
improves the signal-to-noise ratio (SNR) of the detected signal
and accordingly improves the dynamic range but degrades the
spatial resolution of the OTDR. To overcome this tradeoff
between the SNR and the spatial resolution, the use of corre-
lation techniques—commonly used in wireless radars—have
been suggested, e.g., employing periodic pseudorandom bit
sequences (PRBSs) [1], [2]. Still, with the problem resulting
from the periodic features of PRBS, this approach was found to
be unsuitable for the practical applications [3].

Overcoming the limitations of PRBS-coded OTDR, the com-
plementary correlation OTDR (cc-OTDR) based on the Golay
codes was suggested [4]. Following the cc-OTDR, an OTDR
based on the simplex codes (scs) was then proposed [5],
predicting better SNR performances (over the Golay-code
cc-OTDR) without the penalty in the spatial resolution. Still,
with the analysis based on simple analogy—compared to that
of optical spectrometry [6], [7]—the scope of the work was
limited to a conjecture on the expected amount of coding
gain (SNR increase over conventional OTDR, with identical
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measurement time and spatial resolution). Considering the need
of detailed guidelines for its practical application, a systematic
analysis—with considerations on OTDR-specific hardware and
supporting experimental data—should be provided to give in-
sights for the initial design consideration.

In this work, we develop a generalized procedure for the
performance analysis of sc-OTDR, to fully analyze its noise
characteristics and to provide practical guidelines for the con-
struction of such an OTDR. We also experimentally demon-
strate the SNR improvement in sc-OTDR by constructing
an OTDR board with pulse modulation/decoding capability.
Experiments have been performed using 7 ∼ 255-bit scs sup-
porting the theory, with excellent agreement over the entire
code lengths.

II. TIME-DOMAIN APPLICATION OF

HADAMARD TRANSFORM

The S matrix has been used for noise reduction in optical
spectrometry [6], [7]. Briefly, the S matrix is a unipolar matrix
composed of 1’s and 0’s, and the rows of this matrix are
called scs. This matrix can be also derived from a normalized
Hadamard matrix, a bipolar matrix composed of 1’s and −1’s
[7]. The S matrix, due to its unipolar characteristics, has been
generally applied in the detection of optical power signals,
although it provides a lower efficiency than the Hadamard
matrix. The operation using Hadamard or S matrix is called
the Hadamard transform, which has been carried out by a
fast algorithm—fast Hadamard transform (FHT) [8]. Tradition-
ally, the Hadamard-transform technique has been applied to
the spectrometry by using a spatial mask having holes and
blocks [7].

Instead of using the spatial mask, the technique also can be
applied to an OTDR system by turning the laser ON and OFF

in the time domain, to represent 1’s and 0’s in the S matrix. As
an example, we illustrate in Fig. 1 the time-domain equivalent
of the S matrix (order 3). Defining ψ1(t) as an OTDR trace,
measured with a single probe pulse P1(t), we also set ψ2(t)
and ψ3(t) to be the traces measured with the time-delayed
probe pulses P2(t) = P1(t− τ) and P3(t) = P1(t− 2τ), re-
spectively [τ : pulsewidth of P1(t)]. Fig. 1(a) shows that the
following relationships should be satisfied between these time-
delayed pulses traces.

P2(t) =P1(t− τ), P3(t) = P1(t− 2τ)

ψ2 =ψ(t− τ), ψ3(t) = ψ1(t− 2τ). (1)
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Fig. 1. Application of Hadamard transform to the OTDR in the time domain.

Under these arrangements, three coded traces η1(t), η2(t),
and η3(t) can be measured by launching coded pulse sequences
into the fiber [Fig. 1(b)] as follows:

P1(t) + P3(t) ⇒ η1(t) =ψ1(t) + ψ3(t) + e1(t)

P2(t) + P3(t) ⇒ η2(t) =ψ2(t) + ψ3(t) + e2(t)

P1(t) + P2(t) ⇒ η3(t) =ψ1(t) + ψ2(t) + e3(t) (2)

or equivalently
 η1(t)
η2(t)
η3(t)


 =S


ψ1(t)
ψ2(t)
ψ3(t)


+


 e1(t)
e2(t)
e3(t)




S =


 1 0 1

0 1 1
1 1 0


 (3)

where e1(t), e2(t), and e3(t) correspond to the amplitudes of
the receiver noise in each measurement, and S is the S matrix
of order 3.

To recover the conventional OTDR trace ψ1(t), we apply
the inverse Hadamard transform to the measured three (coded)
traces, utilizing the following equations [here, ψ̂i(t) represents
the estimate of ψi(t)]:

 ψ̂1(t)
ψ̂2(t)
ψ̂3(t)


 =S1


 η1(t)
η2(t)
η3(t)




=
1
2


 1 −1 1

−1 1 1
1 1 −1




 η1(t)
η2(t)
η3(t)


 . (4)

Explicitly including the noise terms, the expression is as
follows:

ψ̂1(t) =
1
2
{η1(t) − η2(t) + η3(t)}

=ψ1(t) +
e1(t) − e2(t) + e3(t)

2

ψ̂2(t) =
1
2
{−η1(t) + η2(t) + η3(t)}

=ψ2(t) +
−e1(t) + e2(t) + e3(t)

2

ψ̂3(t) =
1
2
{η1(t) + η2(t) − η3(t)}

=ψ3(t) +
e1(t) + e2(t) − e3(t)

2
. (5)

Now, averaging these estimates after inversely time shifting
with multiples of τ and utilizing the time relationships in (1),
we finally obtain the restored trace in (6), shown at the bottom
of the next page.

Calculating the mean square error (mse) of the restored trace,
we then get

E



(
ψ̂1(t) + ψ2(t+ τ) + ψ3(t+ 2τ)

3
− ψ1(t)

)2



=
9σ2

36
=

1
4
σ2

∵ E {ei(t+ ς)} = 0, E
{
e21(t+ ς)

}
= σ2(i = 1, 2, 3)

E {ei(t)ej(t+ ς)} = 0 ((i �= j) or (i = j, ς �= 0)) (7)

where E is the time average function. For the derivation of
(7), we assumed that the receiver noise ei(t)’s are uncorrelated
zero-mean random processes with variance σ2. Note that since
the restored trace in (6) was obtained from the measurement
of three coded traces, we have to compare its noise power
to that of the conventional OTDR with N = 3 (simple aver-
aging of three identical single-pulsed measurements). As the
mse of N = 3 averaging process is simply σ2/3, we get the
following SNR improvement (coding gain over the conven-
tional single-pulse averaging OTDR, with identical measure-
ment time and spatial resolution) for the sc-OTDR, at the code
length L = 3. √

σ2

3√
σ2

4

=
2√
3
. (8)

III. GENERALIZATION TO ARBITRARY CODE LENGTH

The above example can be extended to the generalized case
of code length L, as detailed below. Writing SL and S−1

L as the
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S matrix and its inverse matrix of order L, trace estimates can
be written as



ψ̂1(t)
ψ̂2(t)

...
ψ̂L(t)


=S−1

L



η1(t)
η2(t)

...
ηL(t)


 =



ψ1(t)
ψ2(t)

...
ψL(t)


+ S−1

L



e1(t)
e2(t)

...
eL(t)


 .

(9)

Now, inversely time shifting each row in (9) with multiples of
τ , and then introducing matrix TL (normalized matrix of S−1

L ),
we obtain the following equations:




ψ̂1(t)
ψ̂2(t+ τ)

...
ψ̂L (t+ (L− 1)τ)


 =




ψ1(t)
ψ2(t+ τ)

...
ψL (t+ (L− 1)τ)




+
2

L+ 1
TL




e1(t)
e2(t+ τ)

...
eL (t+ (L− 1)τ)




where

TL =
L+ 1

2
S−1

L , Tj,k ∈ {1,−1}. (10)

Now, utilizing the following relation extended from (1)

ψi (t+ (i− 1)τ) = ψ1(t) (i = 1, 2, . . . , L) (11)

we obtain L equations relating the estimate ψi(t) to the conven-
tional trace ψ1(t).

ψ̂1(t) =ψ1(t) +
2

L+ 1

L∑
k=1

T1,kek(t)

ψ̂2(t+ τ) =ψ1(t) +
2

L+ 1

L∑
k=1

T2,kek(t+ τ)

...

ψ̂L (t+ (L− 1)τ) =ψ1(t) +
2

L+ 1

L∑
k=1

TL,kek

× (t+ (L− 1)τ) . (12)

Finally, summing over the traces and taking its average, we
obtain the following equation for the final trace, which includes
the exact noise components:

1
L

L∑
k=1

ψ̂k (t+ (k − 1)τ) = ψ1(t)

+
2

L(L+ 1)

L∑
j=1

L∑
k=1

Tj,kek (t+ (L− 1) τ). (13)

Now, calculating the mse of the restored trace

E



(

1
L

L∑
k=1

ψ̂k (t+ (k − 1)τ) − ψ1(t)

)2



=
4

L2(L+ 1)2
E




 L∑

j=1

L∑
k=1

Tj,kek (t+ (L− 1)τ)




2


=
4

L2(L+ 1)2

{
L2σ2 −

L−1∑
i=1

(L− i)RN (iτ)

}

=
4

(L+ 1)2

{
σ2 − 1

L2

L−1∑
i=1

(L− i)RN (iτ)

}
. (14)

Note that the above result was derived by using the following
assumptions:

E {ei(t+ ζ)} = 0

E
{
e2i (t+ ζ)

}
=σ2

E {ei(t)ej(t+ ζ)} = 0(i �= j)

E {ei(t)ei(t+ ζ)} =Ri(ζ)

=RN (ζ), (i = 1, 2 . . . , L) (15)

i.e., the noise in the receiver is an independent identically
distributed (i.i.d.) and wide sense stationary (w.s.s.) random
process with zero mean—together with the interesting property
of the matrix TL—in (16): The sum of elements in each row is
always −1.

L∑
k=1

Tj,k = −1 (j = 1, 2, . . . , L) (16)

Restricting our analysis to an ideal receiver with an infinite
bandwidth, the mse in (14) can be simplified [for this case, note

ψ̂1̂(t) + ψ2(t+ τ) + ψ3(t+ 2τ)
3

= ψ1(t) +
e1(t) − e2(t) + e3(t)

6

+
−e1(t+ τ) + e2(t+ τ) + e3(t+ τ) + e1(t+ 2τ) + e2(t+ 2τ) − e3(t+ 2τ)

6
(6)
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Fig. 2. Amount of SNR enhancement (coding gain) from the scs used in the
OTDR measurement, as a function of the code length.

Fig. 3. Frequency response of the ideal band-limited receiver and the autocor-
relation function of the noise from the receiver.

that E{eN (t)eN (t+ ς)} = RN (ς) = 0, (ς �= 0)] to

4σ2

(L+ 1)2
. (17)

From this, finally, we can obtain the following expression for
the coding gain of an sc-OTDR with code length = L:√

σ2

L√
4σ2

(L+1)2

=
L+ 1
2
√
L

(18)

Fig. 2 illustrates the amount of SNR enhancement of an sc-
OTDR compared to that of a conventional averaging OTDR
as a function of the code length in decibel scale (10 × log).
This coding gain is identical to the result that can be found
in the spatial-domain analysis of the Hadamard transform for
spectrometry applications [7].

Note that in deriving (17) and (18), we assumed a receiver
with an infinite bandwidth. Different from the spectrometry
application where the coding is applied in space domain, noise

Fig. 4. Picture of the developed OTDR board.

Fig. 5. Schematic diagram of the experiment.

samples adjacent in the time domain are correlated due to
the finite bandwidth of the receiver. Considering the nonzero
autocorrelation values among the noise samples in the time-
domain application of the scs, the complete coding gain of
length L can be obtained as√

σ2

L√
4

(L+1)2

{
σ2 − 1

L2

L−1∑
i=1

(L− i)RN (iτ)
}

=
L+1
2
√

L√
1 − 1

L2σ2

L−1∑
i=1

(L− i)RN (iτ)

. (19)

From (19), we can see that the SNR of the finally restored
trace depends both on the probe pulsewidth and the autocor-
relation function of the receiver noise. Further analysis can be
carried out by assuming the frequency response of the receiver
to be an ideal low-pass filter (Fig. 3). In this case, the coding
gain can be expressed as

L+1
2
√

L√
1 − 1

L2

L−1∑
i=1

(L− i) sin(2iπBτ)
2iπBτ

(20)
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Fig. 6. PC software developed to control the OTDR board, decode the coded traces, and analyze the final trace.

where B is the receiver bandwidth. From Fig. 3 and (20), it is
worth noting that it is possible to see that one can get additional
improvement in the coding gain from the receiver bandwidth
optimization—on top of the pure coding gain attained from
(18). For example, with τ , B as the probe pulsewidth, and
receiver bandwidth, we get the maximum coding gain from the
bandwidth optimization when

(n− 1)τ ≤ 1
2B

. (21)

Meanwhile, the coding gain is minimized when

τ =
3

4B
. (22)

Note that the additional coding gain from the bandwidth op-
timization is much smaller when compared to the pure coding
gain in Fig. 2 but is not a negligible quantity (−0.1 ∼ 1 dB).

IV. EXPERIMENTS

To verify the SNR-enhancement effect in the sc-OTDR, we
developed an OTDR board that could modulate probe pulses
according to the given code sequences, sample the measured
trace, and transmit the sampled data to a PC. The measured
traces are transmitted to the PC using RS-232C, and the final
trace is restored and displayed at the PC. Fig. 4 shows the
developed OTDR board, and Fig. 5 shows a block diagram of
the experimental arrangement.

Texas Instrument’s Digital Signal Processor (DSP)
(TMS320VC33) was used to perform pulse coding, trace ac-
quisition, averaging operation, and data communications. A
Fabry–Pérot laser diode (FP-LD) and an avalanche photodiode
(APD) were used as the optical source and detector, respec-
tively. The electrical bandwidth of the receiver was ∼ 5 MHz,
which is proper for probe pulsewidths ≥ 200 ns.

Fig. 6 shows the PC software developed to control and
communicate with the sc-OTDR board, to restore the final trace

Fig. 7. Experimental results obtained using 7-bit scs and 10-µs bit duration.

from the coded traces, and to display the event table that is
calculated in the software automatically from the final trace.

For a specific experiment, four spools of 20-km single-
mode fiber were connected to the board using fiber connec-
tion/physical contact (FC/PC) connectors, while the end of the
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Fig. 8. Experimental results obtained using 255-bit scs and 0.5-µs bit
duration.

link was terminated with a fiber connection/angled physical
contact (FC/APC) connector.

In Fig. 7, we illustrated experimental results obtained with
7-bit simplex codes at 10-µs unit pulse width. Conventional
single-pulse traces (gray line) are displayed together with the
simplex-coded traces (black line). Fig. 7(c) shows the final
trace averaged from seven single-pulsed traces. To compare,
in Fig. 7(d), we plotted the final trace of sc-OTDR decoded
from seven simplex-coded traces. With the same measurement
time (seven probe shots for both), the final trace obtained using
simplex codes showed 2.3 dB lower noise level than the single-
pulse averaged trace [the noise levels have been determined
by calculating the root-mean-square value of the trace samples
after the fiber end (80–120 km)]. It is worth noting that Fig. 7(a)
and (b) shows OTDR traces measured before the averaging
(a, with a conventional single pulse) or the decoding (b, with
a simplex code: code word 1 011 010) process. As can be seen
from the figure, the coded trace is composed of a noncoherent
superposition of four delayed copies of the single-pulsed trace,
where the delay times (locations) of the copies correspond to
the 1s in the code word [Fig. 1 and (2)].

For another example, Fig. 8 illustrates experimental results
obtained using 255-bit simplex codes at 0.5-µs bit duration.
Fig. 8(c) illustrates the final trace averaged from 255 single-
pulsed traces, while Fig. 8(d) shows the final trace decoded

Fig. 9. Coding gains calculated from (a) theory and (b) experimental results.

from 255 simplex-coded traces. Even with the same measure-
ment time (255 probe shots for both) spent, the final trace
obtained utilizing the simplex codes exhibited 9.2 dB lower
noise level (equivalently, coding gain of 9.2 dB) than the con-
ventional single-pulse averaged trace. Note that the difference
of the noise levels is shown as 4.6 dB in the figure since the
traces were displayed using the general one-way (5 × log10)
scale for OTDR.

In addition to these two illustrated examples (7- and
255-bit simplex codes), we performed similar experiments with
15-, 31-, 63-, and 127-bit simplex codes. Illustrated in Fig. 9
were the coding gains obtained from experiments at different
code lengths. As can be seen, excellent agreement with the
theoretical coding gains has been observed over the entire range
of code lengths.

V. CONCLUSION

We proposed a generalized procedure to fully analyze the
SNR enhancement and the noise characteristics of a noncoher-
ent simplex-coded OTDR. Experimental procedures and prac-
tical considerations have been detailed—including practical
issues such as the receiver bandwidth optimization—supporting
the constructed theory. Developing an in-house OTDR board
with pulse-modulation capability, we experimentally demon-
strated an SNR improvement of up to 9.2 dB by apply-
ing 255-bit scs, in excellent agreement with the theoretical
expectations.
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