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Abstract: The number of circulating tumor cell (CTC) in the peripheral 
blood of cancer patients can be a valuable biomarker for cancer 
diagnosis and treatment monitoring. In this study, we implemented a 
custom-design video-rate confocal microscopy system in capable of 
direct visualization of fast flowing CTC at great saphenous vein (GSV) 
of a live animal model in vivo. Continuous acquisition of video-rate 
images at GSV revealed the highly dynamic time-dependent changes in 
the number of intravenously injected circulating tumor cells. By 
extracting a calibration factor through the hemocytometric analysis of 
intravenously injected long-circulating red blood cells, we established a 
novel quantitation method for CTC in whole body blood in vivo. 
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1. Introduction 

Circulating tumor cell (CTC) refers a cancer cell that have entered bloodstream from the 
primary tumor and survived in the blood circulation, which can extravasate to a distant 
organ and form new tumor colony [1]. This spread of tumor cells from the primary tumor 
to distant organs, called as a metastasis, is the major cause of cancer-related deaths from 
solid tumors (~90%) by causing vital organ failure [2, 3]. Cancer metastasis is a highly 
complicated process consists of multiple steps: the primary tumor growth, cancer cell 
mobilization and invasion into surrounding tissue, intravasation into a blood vessel, 
circulation in the blood stream, extravasation to distant site, and the formation of new 
tumor [1, 4–6]. Throughout these complex progressive steps, the survival during the 
circulation in the blood stream is considered as the most critical checkpoint for cancer cell 
to spread to distant organs. Although a number of cancer cells can routinely intravasate 
into the blood circulation, it have been suggested that much less than one of ten thousands 
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of CTC can survive to form distant metastasis [4, 7]. There has been an increasing 
number of studies reporting the correlation between the number of CTC and the risk of 
cancer metastasis, showing that an increased number of CTC in the peripheral blood 
sample is significantly related with shorter progression-free and overall survival in 
patients with metastatic breast, lung, colorectal and prostate [8–10]. Therefore, the 
quantitation of CTCs in the blood of metastatic cancer patients can provide valuable 
information for the precise monitoring of cancer metastasis, the evaluation of response to 
anti-cancer treatment and the early detection of cancer recurrence. 

In the past decade, several techniques for the detection of CTCs from peripheral blood 
samples have been developed, including the CellSearch system (Veridex) approved by 
FDA [9, 11], microfluidics platform [12, 13], chip-based diagnostic MRI (DMR) 
biosensor [14] and real-time PCR [15]. However, those ex vivo techniques using a 
peripheral blood sample drawn from the patient have been suffered low success rate of 
CTC detection. It is principally due to two combined limiting factors. One is the limited 
volume of blood allowed to draw from the patient (about 10 milliliter per each draw) and 
the other is the extreme rarity of CTC in blood (less than one CTC per one milliliter of 
blood [16, 17]). These factors make only a handful number of CTCs present in the blood 
sample of most cancer patients to begin with, which is the principal barrier in establishing 
ex vivo CTC detection techniques as a common tool in cancer treatment. To note, these 
limiting factors could much more adversely limit the detection of CTC from the blood 
sample of patients in the relatively early stages of cancer such as stage 2B and 3 or 
patients in partial remission for whom a close monitoring of cancer progression and the 
efficacy of anti-cancer treatment, potentially using CTC as a surrogate marker, may 
provide the most profound clinical benefit. 

In vivo flow cytometry (IVFC) capable of direct detection of circulating tumor cell 
from the blood vessels in a living animal [18–21] can be one of approaches to overcome 
these barriers. Given enough time, IVFC can analyze much larger volume of bloods than 
ex vivo detection techniques, because it is not limited to the small volume of ex vivo blood 
sample but analyzing continuous flow of blood inside a blood vessel in vivo [22–24]. 
However, most of previous reports have focused on small capillary vessel with diameter 
of several tens of micrometer in which the blood flow is quite slow (100-200 μm/sec); 
thus the analyzed blood volume analyzed for a given time was minimal. It was partly due 
to the slow image acquisition speed of common laser-scanning microscopy system and 
the consequent difficulty in the detection and quantitation of rapidly flowing cells in 
larger blood vessel in which the blood flow is much faster (>2mm/sec). To note, a 
photoacoustic detection of CTCs have been performed on large vessels (e.g. 0.9 mm 
aorta) with fast flow [25, 26], though it didn’t capture the images of flowing CTCs in situ. 
Nevertheless, most of in vivo flow cytometry studies have detected flowing CTCs as a 
sudden spike in the continuously detected signal. However it only provides the 
information about the number of fluorescent objects passing through the focal volume of 
external light inside the vessel, which lack the morphological information such as cell 
size and subcellular features, as well as dynamic information about the CTC behavior in 
blood. More importantly, recent studies have reported the dynamic formation of CTC 
cluster in blood [27–29] and its implication to increased risk of metastasis [30, 31]. 
Collectively, a direct imaging method to capture the microscopic images of flowing CTCs 
and their cluster, preferentially in large vessel with fast blood flow to analyze more blood 
volume in a given time, and a quantitation method for the images to provide dynamic 
morphological information of CTCs have become highly desirable. 

In this study, we implemented a custom-design video-rate confocal microscopy 
system based on fast-rotating polygonal mirror. The system could acquire sub-micron 
resolution images with the size of 512x512 pixels at video rate (30 frames per second). It 
allowed us a direct real-time imaging of rapidly flowing individual cells in the great 
saphenous vein (GSV) of which the diameter is typically about 500 μm. GSV circulates 
about three orders of magnitude more blood than the small capillary vessel, providing 
significantly increased amount of blood for IVFC analysis. To verify the capability of the 
implemented system for the direct imaging of CTC at GSV, we intravenously injected 
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CT26 colorectal cancer cells labeled with green fluorescence dye, carboxyfluorescein 
succinimidyl ester (CFSE) and successfully acquired the clear image of flowing CT26 
cells in the GSV. And we continuously acquired video-rate images of GSV, which 
revealed the highly dynamic time-dependent changes in the number of circulating CT26 
cells. The number of flowing CT26 cell detected at GSV steadily increased right after the 
injection and reached the maximum at 1.5 minutes after the injection as it took some time 
to be evenly mixed with the systemically circulating blood in the body. Then, 
interestingly, it rapidly decreased to below the 10% of the maximum within 2 minutes 
due to the massive destruction of CT26 cells those were suddenly exposed to the harsh 
environment of blood circulation by the intravenous injection. At the same time we 
observed a large number of small-sized fluorescent particles those were presumably the 
cellular debris of CT26 cell destroyed in blood circulation. Indeed, the small debris was 
also quickly disappeared within 2 minutes along with the decrease of circulating CT26 
cells. On the other hand, when we intravenously injected red blood cell (RBC) 
fluorescently labeled with far-red fluorophore - DiD, the number of flowing RBC 
detected at GSV increased and reached the maximum at 1.5 minutes like CT26 cell. Then, 
in contrast to the observation with the CT26 cell, the number of detected RBC was 
maintained at the initially reached maximum over 60 minutes, suggesting the long-term 
survival of RBC in blood circulation after the intravenous injection. This observation is 
fairly reasonable as RBC can naturally sustain harsh environment in blood circulation. 
Notably, from the pre-determined total number of injected RBCs stably maintained in 
blood circulation, we could calculate the relative calibration factor between the 
dynamically varying number of CT26 cells and estimate the total number of circulating 
CTC in whole body blood in vivo. 

2. Experimental setup and methods 

2.1 Video-rate intravital laser-scanning confocal microscope system 

 

 

Fig. 1. Schematic of intravital custom-built video-rate laser scanning confocal microscope 
system and illustration of great saphenous vein (GSV) in the mouse leg: ND, neutral 
density filer; DBS, dichroic beam splitter; BPF, band pass filter; M, mirror; PMT, 
photomultiplier tube; OBJ, objective lens. 

#235885 - $15.00 USD Received 9 Mar 2015; revised 8 May 2015; accepted 14 May 2015; published 19 May 2015 
(C) 2015 OSA 1 Jun 2015 | Vol. 6, No. 6 | DOI:10.1364/BOE.6.002158 | BIOMEDICAL OPTICS EXPRESS 2161 



Our intravital imaging platform was implemented by modifying the custom-built video-
rate confocal laser-scanning microscope system previous developed [32, 33]. Figure 1 
shows the schematics of the imaging system and illustration of great saphenous vein 
located in the mouse leg. Excitation laser beam paths were shown by solid lines and 
emitted fluorescence beam paths were shown by dashed lines. Three continuous-wave 
laser sources composed of 488nm diode laser module (MLD488, Cobolt), 561nm DPSS 
laser (Jive, Cobolt) and 640nm diode laser module (MLD640, Cobolt) were used as 
excitation light source. And intensity of each laser was independently adjusted by neutral 
density filter (Thorlabs, NDC-50C-4M-A). All three laser beams were combined by using 
dichroic beam splitters (DBS1; FF593-Di03, DBS2; FF520-Di02, Semrock) and then 
delivered to a multi-edge dichroic beam splitter (DBS3; Di01-R405/488/561/635, 
Semrock). The collinearly aligned laser beams were scanned by a fast rotating 36 facet 
polygonal mirror (MC-5, aluminum coated, Lincoln Laser) and a galvanometer mirror 
scanner (6230H, Cambridge Technology), generating a two-dimensional raster scanning 
pattern. The scanning laser beams were delivered to the great saphenous vein (GSV) of 
the anesthetized mouse on the XYZ translation stage (3DMS, Sutter Instrument) through 
a commercial long working-distance high N.A. objective lens (LUCPLFLN 40X, 
0.60NA, Olympus), which provided the field of view of 250 × 250 μm. The three-color 
fluorescence signals from the sample were de-scanned and separated from the excitation 
laser beams by DBS3. Then, the signals were split into three individual fluorescence 
signals (green, red, and far-red) by the dichroic beam splitters (DBS4; FF560-Di01, 
DBS5; FF649-Di01, Semrock) and band pass filters (BPF1; FF01-525/45, BPF2; FF01-
600/37, BPF3; FF01-697/58, Semrock). Confocal pinholes (#39-880, Edmund optics) 
were placed in front of each photomultiplier tube (PMT; R9110, Hamamatsu) used as 
fluorescence detectors. We used the pinhole much larger than the airy disk size (300 μm) 
to increase the z-sectioning thickness to have large detection volume. The z-sectioning 
thickness for detection is measured to be 8 μm. Electronic outputs from the PMTs were 
digitized using an 8-bit resolution 3-channel frame grabber (Solios, Matrox) with a 
sampling rate of 10 MHz for each channel. Triple-color images (512 × 512 pixels) were 
displayed and recorded in real time at video-rate of 30 Hz by custom-developed imaging 
software using Matrox Imaging Library (MIL9, Matrox). 

2.2 Cells culture and fluorescent labelling 

In this study, a CT26 murine colon carcinoma cell line was maintained in RPMI 1640 
medium (Invitrogen) containing 10% fetal bovine serum (FBS; Invitrogen) and 1% 
penicillin-streptomycin (Invitrogen) and kept in a 5% CO2 incubator at 37°C. CT26 cells 
were harvested by trypsinization with 0.25% trypsin-EDTA (Invitrogen) and re-
suspended in growth medium. Re-suspended CT26 cells were fluorescently labelled with 
Carboxy-fluorescein diacetate succinimidyl ester (CFSE; Invitrogen). Cell viability more 
than 95% after the labeling was confirmed by using the dead cell staining kit. Likewise 
CT26 cells, to visualize the fast flowing RBCs at GSV, 10μl of blood was drawn from the 
retro-orbital sinus of anesthetized mouse and fluorescently labelled with 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylin-dodicarbocyanine-perchlorate (DiD; Invitrogen). Labelled CT26 
cells and RBCs were maintained at 4°C before intravenous injection into the lateral tail 
vein of anesthetized mice. 

2.3 Animal imaging procedure 

BALB/c mice aged 10~12 weeks were used. Mice were anesthetized by intramuscular 
injection of xylazine (10 mg/kg) and zoletile (30 mg/kg). The hair on the thigh was 
removed by hair clipper and hair removal cream. The GSV was surgically exposed by 
making a small skin incision and removing a subcutaneous fatty tissue. Tail vein catheter 
was used to inject fluorescent agents and cells. Tetramethyl-rhodamine (TAMRA) 
dextran conjugates (D-7139, Life Technology) were intravenously injected to label blood 
plasma, allowing the identification of GSV for imaging. Once the GSV is found, 3D 
translation stage is precisely manipulated to place the GSV at the center of the imaging 
field of view. The position of imaging focal plane in z-axis is adjusted to be located at 60 
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μm inside the GSV wall. After starting a video-rate confocal movie recording, the 
fluorescent labelled CT26 cells and RBCs were intravenously injected through the tail 
vein catheter. The excitation laser power measured below the objective lens was 1 mW, 
0.4 mW and 0.5 mW at 488 nm, 516 nm and 640 nm, respectively. During the imaging, 
the mouse body temperature was maintained at 37 °C by using a homeothermic control 
system (PhysioSuite, Kent Scientific). The temperature of the exposed tissue area 
surrounding GSV was also maintained at 37 °C with warm saline and additional heat pad. 
Animal care and all experiments were performed with the approval of the Animal Care 
Committee of KAIST (protocol no. KA2011-36). 

2.4 Image processing 

For the reliable quantitation of intact circulating cell, we devised an image processing 
algorithm to distinguish the small-sized particle and reasonable cell-sized object. Image 
processing was performed by using custom-written code of Matlab (Mathworks) after 
acquiring the real-time video-rate movie from the GSV. To analyze the time-dependent 
changes in the number of detected flowing cells in GSV, an AVI format video (30 
frames/sec) was continuously recorded from right after the intravenous injection until 20 
minutes. First, the video was converted into individual image sequence. All of the images 
were applied with 2D median filter of size 3 to eliminate isolated speckle noise and 
converted to binary image by thresholding of 50%. From each image, all of the connected 
components were automatically identified and their area in the unit of number of pixels 
was computed by using a Matlab function BWCONNCOMP in Image Processing 
Toolbox. As the pixel size is pre-characterized, we can determine the size of each 
component. After removing all of components smaller than the reasonable size of intact 
cell presumably cellular debris, the number of remaining components was counted as 
intact flowing cells. To exclude the possibility of counting a single cell appeared in 
consecutive frames multiple times, every consecutive frames those have identified cells 
were further analyzed. To note, the mouse leg was carefully positioned so that GSV wall 
and blood flow to be shown along the diagonal direction in the display. Within the 
imaging field of view of 250 μm, the most of flowing cells’ trajectories are observed to be 
relatively parallel to GSV wall with ± 15° deviation. Therefore, for the identified cells 
appeared in consecutive frames, if the connecting trajectory between the positions of cells 
is deviated less than 15° deviated against the GSV wall, they were considered as a single 
cell appeared in multiple consecutive frames. 

3. Results 

3.1 In vivo imaging of intravenous injected circulating CT26 cells at GSV 

We used a custom-built video-rate laser scanning confocal microscope system depicted in 
Fig. 1 for the direct imaging of circulating tumor cell (CTC) at GSV. GSV was selected 
as an imaging site because GSV is superficial vein at thigh that can be easily accessed by 
minimal surgery and GSV can be tightly fixed to minimize motion artifact. In addition, 
GSV is one of the largest veins in the whole body, which circulates about three orders of 
magnitude more blood than the small capillary vessel, providing large volume of blood 
for in vivo flow cytometry analysis. To verify the capability of the implemented system, 
we intravenously injected CT26 colorectal cancer cells labeled with green fluorescence 
dye, carboxyfluorescein succinimidyl ester (CFSE), to wildtype BALB/c mouse. The 
number of injected CT26 cell was 106. In addition, to visualize the blood plasma in GSV, 
100μg of red fluorescent TAMRA-dextran was also intravenously injected. As shown in 
Fig. 2(a), we successfully acquired the clear image of flowing CT26 cells in the GSV. 
However, as it can be easily noticed, along with CT26 cells of which size is more than 7.5 
μm, a large number of green fluorescent small objects were detected, which is mostly cell 
debris, not intact circulating CT26 cells. To exclude these small fragments from the CTC 
quantitation, we developed an image processing algorithm as described in section 2.4. It 
sequentially performs the identification of individual objects, calculation of its size, 
removal of objects smaller than a threshold, finally counting of objects in each image 
frames. Figure 2(a) shows the raw images and their image-processed results with various 
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object size thresholds. Each row shows the outcomes with increasing the size threshold. 
Red circles mark the objects those were removed by increasing the size threshold. In this 
work, we used 7.5 μm as a size threshold to count intact CTCs. 

Figure 2(b) shows the time-domain kinetics of circulating CT26 cells from the 
moment right after the intravenous injection for 20 minutes. Each symbol represents the 
number of detected CT26 cells for 30 seconds with different object size threshold. The 
detected number of circulating CT26 cell steadily increased after the IV injection and 
reached the maximum at 1.5 minutes. This suggests that it takes some time for IV injected 
cells to be evenly mixed into the systemically circulating blood. Then, it rapidly 
decreased to below the 10% of the maximum within 2 minutes. With smaller object size 
threshold, the number of counted objects shows similar kinetics but with significant 
discrepancies during the first 3 minutes. These discrepancies became very small at later 
time point as shown in the inset of Fig. 2(b) showing the magnified curve at 15-20 
minutes, suggesting that the small-sized cell debris was mostly appeared in the first 3 
minutes. 

 

Fig. 2. In vivo imaging of intravenous injected circulating CT26 colorectal cancer cells at 
great saphenous vein (GSV), (a) Raw image and processed results with increasing object 
size threshold, (b) Time-domain kinetics of the number of detected object with different 
object size threshold. Inset shows the magnified curve during 15-20 minutes after the IV 
injection. Scale bar, 20µm. 
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Detailed analysis of collective time-domain kinetics of IV injected CT26 cells and their 
fragments was performed by size-dependent circulating objects counting. Figure 3(a) 
shows histograms representing the size distribution of detected circulating objects during 
1 minute in different size categories: 2.0-2.5 μm, 2.5-3.5 μm, 3.5-4.5 μm, 4.5-5.0 μm 5.0-
5.5 μm, 5.5-6.0 μm, 6.0-6.5 μm, 6.5-7.0 μm, 7.0-7.5 μm and ≥7.5 μm. At 1-2 minutes 
after the IV injection, the detected number of cellular debris smaller than 2.5 μm or 2.5-
3.5 μm range is as many as the intact CT26 cells larger than 7.5 μm. However, after 5 
minutes, although the absolute number is dramatically decreased, size category larger 
than 7.5 μm representing intact circulating CT26 cell became the most frequently detected 
size category. Figure 3(b) shows the time-dependent changes of detected objects size 
distribution. At 1-2 minutes, the portion of intact CT26 cells in total detected objects is 
less than 20%. After 5 minutes, it became almost 50%. Collectively, the rapid 
disappearance of circulating CT26 cells and the observation of huge number of small cell 
fragment during the first 3 minutes suggests the massive destruction of IV-injected CT26 
cells those were suddenly exposed to extremely harsh environment of blood circulation 
such as large shear stress, high concentration of serum-protein and cardiac pumping 
pressure. At 1hour after the IV injection of CT26 cell, the mouse was sacrificed and three 
major organs of liver, spleen and lung were dissected. Interestingly, very little number of 
CT26 cells was observed in liver and spleen. On the other hand, numerous CT26 cells and 
green fluorescent debris were observed in the lung, which suggest that CTC can be easily 
captured by dense and torturous alveolar capillary network in the lung. 

 

Fig. 3. Size-dependent analysis of circulating tumor cells and cellular fragment detected at 
GSV, (a) Histogram representing the size distribution of detected circulating objects at 
different time points, (b) Time-dependent changes of detected objects size distribution. 
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3.2 In vivo quantitation of circulating tumor cells in whole body 

As described in section 3.1, the majority of intravenously injected CT26 colorectal cancer 
cells were quickly disappeared from blood circulation. Only a small fraction of CT26 
cells survived and circulated as CTCs. In contrast, when we intravenously injected red 
blood cells (RBC) labeled by far-red fluorophore DiD, the number of circulating RBC 
detected at GSV was maintained at similar level over 60 minutes. It suggests that the 
majority of RBC survived in blood circulation and keep circulating. By utilizing the 
RBCs as an absolute standard measure that is maintained in whole body circulation, we 
can estimate the total number of circulating CT26 cells. Figure 4(a) shows the circulating 
CT26 cells and RBC in GSV captured in video-rate (30 frames/second) by the custom-
built confocal microscopy platform. Figure 4(b) shows the time-domain kinetics of 
circulating CT26 cells and RBCs from the moment right after the intravenous injection 
for 60 minutes. Each symbol represents the number of detected CT26 cells or 30 seconds. 
The total number of injected CT26 cells and RBCs was 1 million each. Similar to 
previous observation, followed by the maximum at 1 minute, the number of circulating 
CT26 cell was rapidly decreased and then maintained at ~9.7 ± 2.2 per 30 seconds in 
average over 1 hour. 

 

Fig. 4. In vivo quantitation of CTCs through hemocytometric analysis of intravenously 
injected RBCs in whole body, (a) Representative images of fast flowing CT26 cell and 
RBC captured in GSV at video-rate (30 frames/second). (b) Number of circulating CT26 
cells and RBCs detected at GSV after IV injection. After 3 minutes, average account of 
CT26 cells and RBCs were maintained at ~9.7 ± 2.2 and ~122.8 ± 13.6 per 30 seconds, 
respectively. (c) Distribution of circulating CT26 cells and RBCs after 3 minutes to 1 
hour. Scale bar is 20µm. 
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In contrast, the number of circulating RBC was maintained at initially reached peak value, 
~122.8 ± 13.6 per 30 seconds, over 1 hour as shown in Fig. 4(b)-4(c). As the number of 
total circulating RBCs is presumably 1 million, a relative calibration factor to convert cell 
count detected for 30 sec to total cell count in blood circulation was calculated to be 
8,143. Therefore, the number of total circulating CT26 cells in whole body from 3 
minutes after IV injection to 1 hour could be estimated to 78,990. 

4. Conclusion 

In this study, we implemented a custom-design video-rate confocal microscopy system 
based on fast-rotating polygonal mirror, which could acquire sub-micron resolution 
images at 30 frames per second. After the intravenous injection of CT26 colorectal cancer 
cells and RBCs fluorescently labeled by CFSE and DiD, respectively, we successfully 
acquired the clear image of individual flowing cells in the great saphenous vein (GSV) in 
live animal model in vivo. With continuous video-rate imaging acquisition, we monitored 
time-domain kinetics of circulating CT26 cells and RBCs. For reliable counting of intact 
circulating cells distinguished from cellular debris, we developed an image processing 
algorithm for the identification of individual objects, calculation of its size and removal of 
objects smaller than a threshold. The number of circulating CT26 cells detected at GSV 
rapidly increased right after the injection and reached the maximum at 1.5 minutes. Then 
it quickly decreased to below the 10% of the maximum within 2 minutes. At the same 
time, a large number of cellular debris was detected, suggesting massive destruction of 
CT26 cells due to harsh condition of blood circulation. Interestingly, although more than 
90% of injected CT26 cells were destroyed in the first 3 minutes, after the initial dynamic 
variation, the number of circulating CT26 cells was maintained in similar level over 1 
hour, indicating the existence of long-circulating CT26 cells. On the other hand, the 
number of circulating RBCs was maintained at the initially reached maximum over 1 
hour, suggesting that the majority of intravenously injected RBCs could survive in blood 
circulation. After 3 minutes from the simultaneous intravenous injection of 106 CT26 
cells and RBCs, the numbers of circulating CT26 cells and RBCs were maintained at ~9.7 
± 2.2 and ~122.8 ± 13.6 per 30 seconds in average over 1 hour. By utilizing the RBCs as 
an absolute standard measure, the total number of circulating CT26 cells in whole body 
circulation after the initial massive destruction could be estimated to 78,990, suggesting 
only ~7.9% of originally injected CT26 cells survived in blood circulation. To note, not 
only CTCs but also other blood circulating cells could be quantitated by using the newly 
presented in vivo flow cytometric analysis methods, which could be powerful tool for 
various human disease research using preclinical animal model. 
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