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Adiabatic, closed-form approach to the highly efficient
analysis of a fiber Raman amplifier problem
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We propose a novel framework for the solution of a general fiber Raman amplifier problem by use of a closed
integral form of a Raman equation. Treating the given problem as an adiabatic system and taking the
Raman process as the perturbation parameter, we can seek the solution along the iteration axis rather than
the fiber propagation axis, permitting an orders-of-magnitude increase for the product of convergence speed
and spatial resolution in the numerical assessment. © 2005 Optical Society of America
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Because of its wide, f lexible gain bandwidth and in-
trinsically low noise, the fiber Raman amplifier (FRA)
has become indispensable in today’s high-capacity
long-haul optical transmission system.1 Various FRA
modeling methods,2,3 with different levels of conver-
gence speed and accuracy, have been proposed to
produce valuable insights into FRA dynamics and
optimum design before experimental implementation.
These approaches share the common platform of
coupled ordinary differential equations (ODEs) for the
Raman equation set that are solved along the length
of the f iber propagation axis.

We propose an alternative, highly efficient frame-
work for FRA analysis. By treating Raman gain as
a perturbation factor in an adiabatic process, in other
words, by adiabatically turning on the Raman process
in the f iber, one can obtain the solution of the FRA
problem along the iteration axis (for the whole length
of fiber) rather than along the fiber propagation axis,
facilitating faster convergence speed at a gain accu-
racy that is equivalent to that achievable with methods
based on coupled ODEs. A comparison of the perfor-
mance shows that our method has more than 60 times
the convergence speed of the average power method3

for the same level of gain accuracy (relative deviation,
,0.06 dB).

In treating Raman gain as a perturbation factor
we achieved implementation of the algorithm by
(1) deriving a recursive relation for the integrals
of power inside f iber or, equivalently, the effective
length,4 (2) constructing a matrix formalism for the
solution of the given FRA problem, and (3) taking the
output power as the f inal target solution but during
the process of optimization considering the effective
length an interim target solution for the achievement
of faster convergence.

Ignoring the negligible effect of amplified sponta-
neous emission (ASE) and Rayleigh scattering, we can
express the coupled nonlinear Raman process in the
fiber as5
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where Pi is the power at ith wavelength, ai is the at-
tenuation coeff icient, gji is the scaled Raman gain co-
efficient,4 M is the pump number, N is the number
of signal waves, and the upper (lower) sign indicates
a copropagating (counterpropagating) wave. After di-
viding Eq. (1) by Pi and integrating over z, we get
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With additional integration we get the following inte-
gral form of a Raman wave equation:Rz
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Now, utilizing the definition of Leff2i�z� �
Rz
0 Pi�z0��

Pi�0�dz0, we can rewrite Eq. (3) into a closed integral
form for the effective length:
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Fig. 1. Flow diagram of the suggested adiabatic iteration
algorithm along the iteration axis: P0th

sig �0�, 0th signal
power at zk � 0; P 0th

F2P �0�, 0th forward pump power at
zk � 0; P0th

B2P �0�, 0th backward pump power at zk � 0.
© 2005 Optical Society of America



January 15, 2005 / Vol. 30, No. 2 / OPTICS LETTERS 127
To solve Eq. (4) we apply Picard’s iteration method to
it, taking Leff2i as the initial, interim target solution.
At the nth iteration, Eq. (4) becomes
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For the implementation of these equations in the nu-
merical domain we now construct a vector Lnth

eff i�zk�
to assign the value of the effective length for the ith
wavelength at position zk (the discrete position element
covering the whole fiber link in increments of Dz, as
shown in Fig. 1) with the vector elements after the nth
iteration
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Meanwhile, utilizing the rule of superposition with
fractional Raman gains,5 we can express the Raman
gain at a certain wavelength in dB scale as

Gi � 10 log�e�
M1NX
j�1

gjiLeff j �L�Pj �0� . (7)

Extending Eq. (7) for every pump or signal wave, we
can transform the gain equation into the following ma-
trix form:
G � 10 log�e�T̃ 3 P , (8)

where
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Utilizing this formulation, we can obtain the Raman
gains for every combination of pump–signal waves
from a single matrix multiplication without relying on
the solution of complex, coupled ODEs. To implement
the analytical formulation derived above [Eqs. (6) and
(8)] in the numerical domain, we take the following
steps:

Step I. Set the initial parameter and make the
first iteration: Treating gji 3 Pj �0� 3 Leff j as a per-
turbation parameter in the adiabatic process, we can
assume that it is equal to zero for the 0th iteration
step, to yield a 0th-order initial effective length
L̃0th

eff j � �1 2 exp�7ajL���aj . At the same time, to
facilitate the application of a transfer matrix for all
forward or backward propagating waves we treat
the forward propagating waves injected at the input
end �z � L� as backward propagating waves assigned
at the output end5 (z � 0, as illustrated in Fig. 1).
To do so, we set P0th

sig �0� and P0th
F2P �0� to be equal to

�P0th
sig �L� 2 jfiber lossj� and �P0th

F2P �L� 2 jfiber lossj�,
respectively, for the forward propagating waves in
the counterpropagating and bidirectional pumping
configurations while we use the predetermined initial
signal power and forward pump power P0th

sig �0� and
P0th
F2P �0�, respectively, for codirectional waves.

The effect of this approximation is negligible in the
initial iteration because the perturbation gji 3 Pj �0� 3

Leff j of the forward propagating signal and the pump
is much smaller than that of the backward propagating
pump �P0th

sig �0��P0th
F2P �0� ,, P0th

B2P �0��.

Step II. Update the effective length, transfer func-
tion, gain, and signal– forward pump power:
Substituting P0th�0� and L̃0th

eff j into Eq. (6), we can
get L̃1th

eff j . With P0th�0� and T̃ 1th (calculated from
L̃1th

eff j ), we can get G1th from Eq. (8). To get the f irst
iteration result of target solution P1th�0� we update
P1th
sig �0� as �P0th

sig �L� 2 jfiber lossj 1 G1th� and
�P1th

F2P �L� 2 jfiber lossj 1 G1th�, respectively, for the
forward propagating waves in the counterpumping–
bidirectional pumping scheme, while we use pre-
determined initial input signal power and forward
pump power P0th

sig �0� and P0th
F2P �0�, respectively, in the

codiretional pumping configuration.

Step III. Use the following reiteration procedure:
Repeating the iteration procedure described in Step II
with higher-order values of L̃eff j , T̃ , G, and P �0�, we
can obtain the final solution set.
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Fig. 2. Raman on–off gain and signal power evolution at
a wavelength of 1530–1600 nm (10-nm spacing) for three
pumping conf igurations: (a) codirectional, (b) counterdi-
rectional, and (c) bidirectional.

Fig. 3. FRA noise at T � 300 K in the counterpump-
ing conf iguration: (a) forward ASE power, (b) double
Rayleigh backscattered (DRS) signal power.

To verify the proposed algorithm we compared our
simulation results with those obtained by the average
power method3 (Fig. 2). Seventy-one signals were
used at wavelengths of 1530–1600 nm with 1-nm
spacing and a signal power of 213 dBm�channel. For
the codirectional–counterdirectional pumping scheme,
14 pumps were used (1420–1480 nm with 5-nm spac-
ing, and an additional pump at 1495 nm). For the
bidirectional pump, 4 pumps in the forward direction
(1420–1435 nm with 5-nm spacing) and 10 pumps
in the backward direction (1440–1480 nm with 5-nm
spacing and an additional pump at 1495 nm) were
used. We used 37 km of dispesion-shifted fiber with a
larger Raman gain coefficient that that of single-mode
fiber as the test gain medium. As can be seen from
Fig. 2, we obtained more than enough convergence
accuracy after six iteration steps; the improvement
in accuracy from the next order of iteration was less
than 0.0001 dB. The relative gain difference between
the proposed method and the average power method
remained less than 0.06 dB over the whole 71-nm
gain spectral range. The required computation time
to get the exact Raman gain and signal–pump power
distribution with a 100-m step size was less than
0.6 s for all the codirectionally; counterdirectionally;
and bidirectionally pumping configurations, with a
conventional PC (2.0-GHz CPU clock). Obviously, the
larger the step size, the shorter the computation time,
but at the expense of increased error. The measured
convergence speed with the average power analysis
method for the same system configuration was much
longer (36 s; step size, 1.85 km). Figure 2 also shows
the signal’s evolution along the fiber. The excellent
agreement between the two simulation results shows
the stability of the proposed algorithm. Test results
of FRAs with high net gain of as much as 10–20 dB
(convergence showed dependence on parameters such
as loss/gain coefficient, pumping scheme, and signal
power) also showed that the stringent design con-
ditions could be met within a subsecond time scale.
By using the acquired signal distribution we can
also obtain various FRA noises, if necessary, from
well-known formulas.6 Figure 3 shows the various
Raman noise components for the counterpumped FRA.

We have proposed and demonstrated a highly effi-
cient framework that replaces the complicated differ-
ential Raman equation with a novel closed integral
form that can also be used for the design of arbitrarily
shaped Raman gain spectra.4 By updating the effec-
tive length along the iteration axis we obtain Raman
gain and pump–signal power evolution with orders of
magnitude increases in the convergence speed and spa-
tial resolution compared with those obtained with the
previous, coupled ODE-based approaches.
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