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Abstract: Visualization of cellular dynamics in the gastrointestinal tract of 
living mouse model to investigate the pathophysiology has been a long-
pursuing goal. Especially, for chronic disease such as Crohn’s disease, a 
longitudinal observation of the luminal surface of the small intestine in the 
single mouse is highly desirable to investigate the complex pathogenesis in 
sequential time points. In this work, by utilizing a micro-GRIN lens based 
side-view endomicroscope integrated into a video-rate confocal microscopy 
system, we successfully performed minimally-invasive in vivo cellular-level 
visualization of various fluorescent cells and microvasculature in the small 
intestinal villi. Also, with a transgenic mouse universally expressing 
photoconvertible protein, Kaede, we demonstrated repetitive cellular-level 
confocal endoscopic visualization of same area in the small intestinal lumen 
of a single mouse, which revealed the continuous homeostatic renewal of 
the small intestinal epithelium. 
©2015 Optical Society of America 
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1. Introduction 

For inflammatory bowel disease research, direct observation of cellular phenomena in the 
gastrointestinal tract of a model mouse has been a long-pursuing goal. Especially, for chronic 
condition such as Crohn’s disease mostly affecting small intestine, longitudinal and repetitive 
cellular visualization and analysis of luminal surfaces under the natural in vivo environment is 
highly desirable as it can provide valuable information for investigating complex pathogenesis 
in sequential viewpoint [1–3]. To analyze the cellular-level pathologies in inflammatory 
bowel disease, most previous studies have been primarily dependent on ex vivo histological 
observation of excised intestinal tissues [4–6]. However, it could provide only static 
information at a single specific time point of excision, which gave significant limitations in 
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investigating dynamic longitudinal events in the intestinal tract such as stromal cell-cell 
interaction, immune cell trafficking and cellular-level remodeling [2]. 

During the last decade, laser-scanning fluorescence microscopy such as confocal and two-
photon microscopy has been actively utilized to visualize dynamic pathophysiological cellular 
processes in various animal models for human diseases. However, in vivo applications of 
these high-resolution microscopy techniques to live animal model have been mostly limited to 
easily accessible tissues such as skin, eye or some tissues exposable by simple surgical 
procedure. Although not impossible, intestinal tracts those are difficult to exteriorize and 
access with conventional large-sized imaging optics have been remained as a particularly 
challenging tissue to be visualized in microscopic cellular resolution in vivo. Notably, there 
are a few reports demonstrated the dynamic cellular-level imaging of small intestine of live 
mouse model by high-resolution laser-scanning microscopy [7–9]. However, all of these 
reports relied on intensive surgical procedures to exteriorize small intestine and secure an 
enough space to apply large-sized imaging objective lens, which is too invasive to be repeated 
on a single animal. To achieve longitudinal and repetitive cellular visualization and analysis 
of luminal surfaces of small intestinal tract under the natural in vivo environment, a 
significantly less invasive approach is clearly required. 

Endomicroscopy have been actively developed for minimally invasive visualization of 
internal organs of small animal models [10–17]. High-resolution confocal endomicroscopy 
relying on resonant single-mode fiber scanning has successfully visualized brain tumor in rat 
model [10], surgically exposed colorectal cancer [11] and infected small intestine [12] in 
mouse model, demonstrating its potential for a cellular-level diagnostic tool. Although it is 
only demonstrated by using ex vivo tissue, spectrally encoded confocal microscopy [13] and 
three-photon microscopy [14] equipped with custom designed endoscopic probes have 
successfully obtained cellular-level images from swine esophagus and mouse lung 
respectively without any exogenous labeling, validating their clinical applicability. A 
commercial rigid endoscope modified for fluorescence imaging has applied to obtain a fish-
eye view image of colorectal cancer in mouse model in vivo [15]. Side-view confocal 
endomicroscopy [16, 17] based on miniature GRIN lens and micro-prism has successfully 
demonstrated a repetitive cellular-level imaging of colorectal cancer development in mouse 
model. However, in contrast to the colon which is easily accessible through a natural orifice; 
anus, longitudinal repetitive cellular-level visualization of same area in the small intestine has 
not yet been achieved. 

In this work, by utilizing a micro-GRIN lens based side-view endomicroscope integrated 
into a video-rate confocal microscopy system, we performed minimally-invasive cellular-
level visualization of microvasculature and fluorescent cells in the small intestine, in vivo. The 
side-view endomicroscope was fabricated by stacking 2 mm diameter GRIN lenses – a 
coupling lens, a relay lens with 1 pitch and a high NA imaging lens attached with an 
aluminum coated 90° micro-prism (1.3 mm of base length). To minimize the invasiveness of 
the imaging procedure, the side-view endomicroscope was carefully inserted into the lumen of 
small intestine via a small incision on the abdominal skin, peritoneum and a needle hole on 
the wall of small intestine. By using various transgenic mice expressing green fluorescent 
protein (GFP), we successfully visualized the distribution of mononuclear phagocytes 
(CX3CR1-GFP), T cells (CXCR6-GFP) and lymphatic vessel (Prox1-GFP) along with 
microvasculature in the small intestinal villi, in vivo. Also, fluorescently labeled red blood 
cells (RBC) those were rapidly flowing through the capillary network in the small intestinal 
villi were directly imaged in real time. Finally, by using a transgenic mouse universally 
expressing photoconvertible protein, Kaede, we demonstrated repetitive cellular-level 
visualization of same area in the small intestinal lumen of the single mouse, revealing the 
continuous self-renewal of the small intestinal epithelium in vivo. 
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2. Materials and methods 

2.1 GRIN lens based side-view endomicroscope 

Gradient-index (GRIN) optics plays a role as an alternative way to guide an optical beam by 
gradual variation of the refractive index of a lens. In contrast to a conventional lens which has 
different refractive index only at the interface between materials, a GRIN lenses depends on a 
gradual refractive index change within the material. The GRIN lens has several unique 
advantages for implementation in a miniaturized optical device. A flat surface in cylindrical 
shapes simplifies the fabrication process to assemble multiple GRIN lenses into a single 
device with a desired performance. Also GRIN lens can achieve a relatively high NA with a 
very small optical aperture of several millimeters, which makes the GRIN lens as a preferred 
choice to fabricate a miniaturized optical device for visualization of microscopic object. In 
this work, the previously reported micro-GRIN lens based side-view endomicroscope [18] 
 

 
Fig. 1. (a) Schematic and magnified photos of the fabricated side-view endomicroscope 
incorporating three GRIN lenses (coupling, relay and imaging lens) and an aluminum coated 
90° microprism. (b) Schematic and a photo of the custom-built 360° rotation mount for the 
side-view endomicroscope. 
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was utilized. The endoscopic probe was fabricated by GRINTECH with a custom designed 
GRIN lens. It consists of a high NA coupling lens (NA 0.5, IFRL-200-023-50-NC), a relay 
lens with 1 pitch (NA 0.1, IFRL-200-100-11-NC) and a imaging lens (NA 0.5, IFRL-200-
cust-50-NC) with an aluminum coated micro prism (1.3 mm in length) attached to reflect the 
transmitted light for side-viewing. Figure 1(a) shows the schematic and magnified photos of 
the fabricated side-view endomicroscope. The fabricated optical components were packaged 
in a stainless-steel tube to have a diameter of 2.2 mm and length of 60 mm. The inner 
diameter of mouse small intestinal tract is approximately 2 mm which is slightly smaller than 
the diameter of the side-view endomicroscope, 2.2 mm. Therefore the small intestine wraps 
the probe smoothly with small tension. It makes the luminal wall of small intestine keep a 
uniform contact with the side-view endomicroscope in all 360 degree, which helps to achieve 
better image quality while navigating through the small intestine with the rotating side-view 
endomicroscope. At the distal surface of the micro-prism, a cover slip was attached by topical 
application of UV-curing optical adhesive (NOA81, Thorlabs). Additionally, to avoid 
potential damage to the luminal wall of small intestine, the entire distal end of the probe was 
finished in round shape with a UV-curing optical adhesive as shown in the photograph of Fig. 
1(a). As shown in Fig. 1(b), the fully-packaged side-view endomicroscope was then inserted 
into the through hole of probe holder fixed to a pulley and two ball bearings (FL6700ZZ, 
Misumi). Then it was mounted to the X-Y translation stage (CXY1, Thorlabs) for the precise 
adjustment of the probe position. The focal plane was formed roughly at the surface of the 
probe and was continuously adjustable in range of 250 μm. Focal plane in z-axis was 
adjustable by changing the distance between the objective lens (LUCPlanFLN 40X, NA 0.6, 
Olympus) and the proximal end of the endomicroscope which is supported by X-Y translation 
stage and Z-axis translation stage (9061-COM-M, Newport). The endomicroscope could be 
endlessly rotated in 360° by a shaft (SFMR5-100, Misumi) fixed to a pulley connected to the 
other probe-holding pulley by a timing belt. After the integration into the imaging system, the 
side-view endomicroscope provides the circular-shaped field of view (FOV) of 311 μm in 
diameter with 10 μm axial resolution. 

2.2 Video-rate laser-scanning confocal microscope system 

The side-view endomicroscope was integrated to a custom-built video-rate laser scanning 
confocal microscope system implemented by modifying the previously developed imaging 
system [19–21]. Figure 2 shows the schematic and the photos of the microscope system 
equipped with the side-view endoscope for in vivo small intestine imaging. Four continuous-
wave laser modules at 405 nm (Coherent OBIS), 488 nm (Cobolt MLD), 561 nm (Cobolt 
Jive) and 640 nm (Cobolt MLD) were used as excitation sources for multi-color fluorescence 
imaging. All the laser beams were combined by dichroic beam splitters (DBS1, FF593-Di03; 
DBS2, Di01-R405; DBS3, FF520-Di02, Semrock) and delivered to a multi-edge dichroic 
beam splitter (DBS4, Di01-R405/488/561/635, Semrock). The aligned laser beams were 
raster-scanned by a rotating 36 facet polygonal mirror (MC-5, Lincoln Laser) for fast X-axis 
scanning at 17.28 kHz and a galvanometer mirror scanner (6230H, Cambridge Technology) 
for slow Y-axis scanning at 30 Hz. The raster-scanning laser beam was delivered to the back 
aperture of objective lens. Relaying lenses were selected to achieve the field of view (FOV) of 
250 × 250 μm with 40X objective lenses (LUCPlanFLN, NA 0.6, Olympus). The scanning 
laser beam was delivered to the tissues of internal organs of an anesthetized mouse on a XYZ 
translation stage through the side-view endomicroscope. The fluorescence signals from the 
sample were epi-detected by the objective lens, back propagated through the scanning optics 
and then separated by the multi-edge dichroic beam splitter, DBS4. Subsequently, the 
fluorescence signals were split into four single-color signals by dichroic beam splitters 
(DBS5, FF484-Di01; DBS6, FF560-Di01; DBS7, FF649-Di01, Semrock) and band pass 
filters (BPF1, FF01-442/46; BPF2, FF02-525/50; BPF3, FF01-600/37; BPF4, FF01-685/40, 
Semrock) and simultaneously detected by four photomultiplier tubes (PMT; R9110, 
Hamamatsu). The electronic outputs from the PMTs were digitized by a frame grabber 
(Solios, Matrox) with a sampling rate of 10 MHz for each channel. The images of 512 × 512  
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Fig. 2. Schematic and photo of a custom-built laser scanning confocal microscopy system 
integrated with side-view endomicroscope: ND, neutral density filter; DBS, dichroic beam 
splitter; BPF, band pass filter; M, mirror; PMT, photomultiplier tube; Obj, objective lens. 

pixels were displayed and recorded in real time at a frame rate of 30 Hz by custom-written 
imaging software using Visual C++ and Matrox Imaging Library (MIL9, Matrox). 

2.3 Animal 

In this study, CX3CR1-GFP, CXCR6-GFP (Stock no. 005582, 005693 Jackson Laboratory) 
and Prox1-GFP mice (kindly provided by Dr. Hong [22]) which exclusively express GFP on 
mononuclear phagocytes, helper T-cells and lymphatic vessels in the small intestine, 
respectively, were used to demonstrate the capability of the side-view endomicroscope for in 
vivo cellular-level visualization of small intestine. Kaede transgenic mice (kindly provided by 
Dr. Tomura and Dr. Miwa [23]) which universally express a photo-convertible fluorescent 
protein ‘Kaede’, were used to longitudinally visualize the regenerated epithelium of small 
intestinal villi. Kaede protein undergoes irreversible photoconversion from green to red 
fluorescent emission in response to UV-violet light [24]. 

2.4 Imaging procedure 

For the in vivo imaging, mouse was anesthetized by intraperitoneal injection of a mixture of 
zoletil (30 mg/kg) and xylazine (10 mg/kg). Mouse body temperature was maintained at 36°C 
by a temperature monitoring and homeothermic control system (RightTemp, Kent Scientific). 
The mouse skin was shaved by a hair clippers and removal cream before surgical procedure 
for the imaging. To visualize the microvasculature in the small intestinal villi, anti-CD31 
antibody (Stock no. 553708, BD Biosciences) conjugated with a far-red color fluorophore, 
AlexaFluor 647 (A20006, Invitrogen), was intravenously injected into the mouse at 3 hours 
before the imaging. To visualize the rapidly flowing red blood cells (RBC) in the capillary of 
the small intestinal villi, FITC-dextran (BCBF2730V, Sigma) as a fluorescent angiography 

#246109 Received 17 Jul 2015; revised 5 Sep 2015; accepted 7 Sep 2015; published 11 Sep 2015 
(C) 2015 OSA 1 Oct 2015 | Vol. 6, No. 10 | DOI:10.1364/BOE.6.003963 | BIOMEDICAL OPTICS EXPRESS 3968 



agent and fluorescently labeled RBCs by DiD (V-22889, Invitrogen) were intravenously 
injected. 

After a small incision on the abdominal skin and peritoneum of the anesthetized mouse, 
the endomicroscope was carefully inserted through a 2 mm diameter hole made on intestinal 
wall by a needle into the lumen of small intestine. Before the insertion of the endomicroscope, 
50 μl of PBS was administrated into the lumen as a lubricant to reduce the friction between 
the probe and luminal wall of small intestine. After imaging, small intestinal wall, peritoneum 
and skin were independently closed by a surgical suture. For longitudinal observation of a 
single mouse, repetitive surgical procedure including the incision and suture of the abdomen 
and the small intestinal wall was conducted with two day interval at the same location of the 
anesthetized mouse. Also, anti-inflammatory drugs including trimethoprim and 
sulfamethoxazole were supplied into the drinking water and a non-steroidal anti-inflammatory 
drug, Rimadyl, was administrated by intraperitoneal injection every day. 

3. Results 

3.1 In vivo cellular-level visualization of the small intestine by side-view endomicroscope 

The inner luminal surface of the small intestine has numerous villi those are covered by a 
single layer of epithelial cells, enterocytes. A loose connective tissue under the epithelium, 
called lamina propria, accommodates numerous immune cells, blood capillaries and 
lymphatic vessel. As shown in Fig. 3(a)-3(c), we successfully obtained in vivo cellular-level 
images of individual cells and microvasculature from the small intestine of anesthetized 
transgenic mice expressing the GFP in various cells. Mononuclear phagocytes (CX3CR1-GFP 
[25]), T-cells (CXCR6-GFP [26]) and lymphatic vessels (Prox1-GFP [22]) existing in the 
lamina propria of each villus were clearly visualized in vivo by using the side-view 
endomicroscope as shown in Fig. 3(a), 3(b) and 3(c), respectively. Capillary vessels 
fluorescently labeled by the intravenous injection of anti-CD31 antibody conjugated with far-
red fluorophore AlexaFlour 647 were simultaneously imaged in vivo. As shown in Fig. 3(a), 
CX3CR1+ mononuclear phagocytes were densely populated in the lamina propria and mostly 
located at perivascular space. T-cells were also mostly located at perivascular space as shown 
in Fig. 3(b). The lymphatic vessel located at the center of each villus, called lacteal, and the 
nuclei of lymphatic endothelial cells strongly expressing Prox-1 are clearly visible in Fig. 
3(c). In addition, by utilizing the video-rate image acquisition capability of the imaging 
system, we successfully captured images of rapidly flowing red blood cells (RBC) in the 
capillary blood vessels of small intestine as shown in Fig. 3(d) by using the side-view 
endomicroscope. 2MDa FITC-dextran was intravenously injected as a fluorescent 
angiography agent to label the blood plasma of capillary vessels. RBCs labeled by far-red 
fluorophore, DiD, were also intravenously injected to wildtype C57BL/6 mouse. In the Fig. 
3(d) shows the individual image frames obtained in 30 frames per second. Rapidly flowing 
RBCs (white arrowhead) in the capillary blood vessels in the villus of small intestine were 
clearly visualized. 
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Fig. 3. Representative in vivo images obtained from the small intestine of (a) CX3CR1-GFP 
mouse, (b) CXCR6-GFP mouse, and (c) Prox1-GFP mouse, respectively, along with capillary 
blood vessels (red) by using side-view endomicroscope. (d) Real-time fluorescence images of 
circulating red blood cell (red, white arrowhead) in the blood vessel (green) of the villi. Time 
interval: 1 sec. Scale bar: 50 μm. 

3.2 Longitudinal repetitive imaging of the small intestine by side-view endomicroscope 

Due to persistent aggression of food contents and pathogenic factors, the inner epithelium of 
the small intestine suffers from very high rate cell death [27]. Thus the epithelial cells of the 
villi are required to renew themselves quickly. Enterocytes, the most abundant type of cells in 
the epithelium of the villi, are replaced in every 3~5 days by the newly differentiated cells 
those were originated from the stem cells existing in the crypt bases [28, 29]. The newly 
generated cells from the crypt continuously migrate toward the epithelial tip of the villi and 
replace the dead cell. We successfully visualized the epithelial cell renewal at the small 
intestinal villi by performing repetitive longitudinal cellular-level in vivo visualization of 
same area in the small intestine in the single mouse with the side-view endomicroscope. To 
distinguish the pre-existing epithelial cells undergoing continuous cell death from the newly 
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migrated cells replacing them, we used a transgenic mouse universally expressing 
photoconvertible protein, Kaede [23, 24]. Under the ultraviolet light (350 – 400 nm) 
irradiation, Kaede irreversibly transmutes its fluorescent emission from green (peak 
wavelength: 518 nm) to red (peak wavelength: 582 nm). Photoconverted Kaede expressing 
cell retains the red fluorescence, while all of newly generated cell expresses original green-
fluorescent Kaede. Therefore, once we photoconverted the epithelial cells in the small 
intestine of a Kaede mouse, we could clearly identify the newly generated epithelial cells 
migrated from the crypt base by their green fluorescence. Furthermore, we could also 
repetitively find the exactly same area of the small intestine with relatively small FOV of the 
side-view endomicroscope by simply searching the photoconverted area which is clearly 
distinguishable from neighborhood area. 

Figure 4 shows longitudinal repetitive cellular-level visualization of the same area in the 
small intestine of the Kaede mouse with 2 days interval. At day 0, we first identified the 
normal-looking area in the small intestine and then delivered the 405nm light through the 
side-view endomicroscope to irreversibly photoconvert the Kaede protein inside the villi. The 
optical power of 405 nm delivered to the tissue was measured to be 480 μW and the 
irradiation time was 10 seconds. We used 488 nm and 561 nm laser light to excite the green-
fluorescent Kaede and photoconverted red-fluorescent Kaede, respectively. Green- and red-
fluorescent Kaede were detected through the bandpass filter transmitting 500 - 550nm and 
581.5 - 618.5nm, respectively. As shown in Fig. 4, after the delivery of the 405nm light, all of 
the epithelial cells and residing cells in the lamina propria of the villi were completely 
photoconverted to red-fluorescent. After 2 days, we could observe newly migrated green-
fluorescent Kaede expressing cells in the lamina propria (arrow) those were immune cells 
actively circulating the whole body for immune surveillance. In contrast, epithelial cells, 
mostly enterocytes (arrowhead), still retained red-fluorescent Kaede, suggesting that the 
renewal was not yet occurred. To note, we observed colocalization of green and red 
fluorescence signals from the newly migrated green-fluorescent Kaede cells, which was 
caused by the fluorescence bleed-through from green- to red-fluorescence detection channel 
(star). After 4 days, we could observe the most of enterocytes (arrowhead) express original 
green-fluorescent Kaede, suggesting the renewal of the epithelium of the small intestinal villi. 

 
Fig. 4. Longitudinal repetitive visualization of same area in the small intestine of the single 
Kaede mouse obtained by side-view endomicroscope in 2 days interval. Lamina propria 
residing cells (arrow) and enterocytes (arrowhead) were longitudinally monitored. Scale bar: 
50 μm. 
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4. Conclusion 

In this work, we achieved minimally-invasive cellular-level in vivo visualization of 
microvasculature and fluorescent cells in the small intestine by utilizing a micro-GRIN lens 
based side-view endomicroscope, which enabled a repetitive imaging in a single mouse. By 
using various transgenic GFP reporter mice, we successfully acquired the images of 
mononuclear phagocytes (CX3CR1-GFP), T cells (CXCR6-GFP) and lymphatic vessel 
(Prox1-GFP) along with microvasculature in the small intestinal villi, in vivo. Most 
importantly, by using a transgenic mouse expressing photoconvertible protein, Kaede, we 
achieved repetitive cellular-level visualization of same area in the small intestinal lumen of a 
single mouse, revealing the continuous self-renewal of the small intestinal epithelium in vivo. 
By being applied to various mouse models for Crohn’s disease and ulcerative colitis, this 
technique can provide a new insight to understand complex pathophysiology of these diseases 
originated from the epithelium of intestinal tracts. 
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